Development of the Finite Element Modeling Markup Language

Author:

Michopoulos J. G.1

Affiliation:

1. U.S. Naval Research Laboratory, Washington, D. C.

Abstract

The finite element modeling Markup Language (femML) effort is addressing the problems of data interpretation and exchange for intra- and inter- application interoperability in the Finite Element Modeling domain. This is achieved through the development of an extensible markup language (XML) variant for finite element model data that will permit the storage, transmission, and processing of finite element modeling data distributed via the World Wide Web and related infrastructure technologies. The focus of this work was to utilize the XML’s power of semantic encapsulation along with the existing and continuously improving associated technology to develop a dialect for exchanging FEM data across various codes with heterogeneous input format syntactic specifications. The main aspects of a finite element definition have been used as archetypes for defining the XML element taxonomy definitions. Namely, the geometry, the material, and the loading aspects of a structural component specification are used to define the first level elements of the associated Document Type Definition (DTD). The element list has been amended with a behavior element specification that represents the solution data to be exchanged or visualized. Various tools have been developed to demonstrate associated concepts along with the ANSYS set of tools.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An information-integrated framework to support e-Manufacturing;The International Journal of Advanced Manufacturing Technology;2006-03-30

2. Modeling and Simulation of Multiphysics Systems;Journal of Computing and Information Science in Engineering;2005

3. Advances of the Finite Element Modeling Markup Language;Computers and Information in Engineering;2005-01-01

4. STEP, XML, and UML: Complementary Technologies1;Journal of Computing and Information Science in Engineering;2004-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3