Optimum Parameter Design of Microbubble Drag Reduction in a Turbulent Flow by the Taguchi Method Combined With Artificial Neural Networks

Author:

Ouyang Kwan1,Wu Sheng-Ju2,Huang Huang-Hsin3

Affiliation:

1. Associate Professor Department of Marine Engineering, Taipei College of Maritime Technology, No. 212, Sec. 9, Yanping N. Road, Taipei 111, Taiwan e-mail:

2. Professor e-mail:

3. e-mail:  Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, No. 75, Shiyuan Road, Daxi Township, Taoyuan County 33551, Taiwan

Abstract

This study attempts to optimize parameters for the microbubble drag reduction in a turbulent flow based on experimental measurements. Five parameters were investigated: three are control factors (the area of air injection, bubble size, and the rate of air injection) and two are indicative factors (flow speed and the measured position of local shear stress). An integrated approach of combining the Taguchi method with artificial neural networks (ANN) is proposed, implementing the optimum parameter design in this study. Based on the experimental results, analysis of variance concluded that, among the control factors, the rate of air injection has the greatest influence on microbubble drag reduction, while bubble size has the least. The investigation of drag reduction characteristics revealed that the drag ratio decreases with an increasing rate of air injection. However, if the rate of air supplied exceeds a certain value, the efficiency of drag reduction can drop. In the case of optimum parameter design, a 21% drag reduction and an S/N ratio of 1.976 dB were obtained.

Publisher

ASME International

Subject

Mechanical Engineering

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3