Fluid–Structure Interaction Study and Flowrate Prediction Past a Flexible Membrane Using Immersed Boundary Method and Artificial Neural Network Techniques

Author:

Kanchan Mithun1,Maniyeri Ranjith1

Affiliation:

1. Biophysics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore, Karnataka 575025, India

Abstract

Abstract Many microfluidics-based applications involve fluid–structure interaction (FSI) of flexible membranes. Thin flexible membranes are now being widely used for mixing enhancement, particle segregation, flowrate control, drug delivery, etc. The FSI simulations related to these applications are challenging to numerically implement. In this direction, techniques like immersed boundary method (IBM) have been successful. In this study, two-dimensional numerical simulation of flexible membrane fixed at two end points in a rectangular channel subjected to uniform fluid flow is carried out at low Reynolds number using a finite volume based IBM. A staggered Cartesian grid system is used and SIMPLE algorithm is used to solve the governing continuity and Navier–Stokes equations. The developed model is validated using the previous research work and numerical simulations are carried out for different parametric test cases. Different membrane mode shapes are observed due to the complex interplay between the hydrodynamics and structural elastic forces. Since the membrane undergoes deformation with respect to inlet fluid conditions, a variation in flowrate past the flexible structure is confirmed. It is found that, by changing the membrane length, bending rigidity, and its initial position in the channel, flowrate can be controlled. Also, for membranes that are placed at the channel midplane undergoing self-excited oscillations, there exists a critical dimensionless membrane length condition L ≥ 1.0 that governs this behavior. Finally, an artificial neural network (ANN) model is developed that successfully predicts flowrate in the channel for different membrane parameters.

Funder

Science and Engineering Research Board(SERB)-Department of Science and Technology

Publisher

ASME International

Subject

Mechanical Engineering

Reference73 articles.

1. Flapping and Bending Bodies Interacting With Fluid Flows;Ann. Rev. Fluid Mech.,2011

2. Energy Harvesting Eel;J. Fluids Struct.,2001

3. An Experimental Study of Paper Flutter;J. Fluids Struct.,2002

4. Turbulent Flow Over a Flexible Wall Undergoing a Streamwise Travelling Wave Motion;J. Fluid Mech.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3