Computational Simulation of the Thermal Performance of a Solar Air Heater Integrated With a Phase Change Material

Author:

Bubnovich Valeri1,Reyes Alejandro1,Díaz Macarena1

Affiliation:

1. Department of Chemical Engineering, Universidad de Santiago de Chile, PO Box 10233, Santiago 9160000, Chile e-mail:

Abstract

The performance of a solar collector with wax as a phase change material (PCM) located in a set of staggered pipes configuration was simulated computationally in this work. For the solar radiation of Chile, the accumulation of heat in the PCM system and the heat release at different time intervals were analyzed during the process of energy capture in summer: (a) without wax and with airflow, (b) with wax and without airflow, and (c) with wax and with airflow. Furthermore, the effects of solar radiation (summer and winter) airflow in the collector were analyzed on the performance of the system. The simulation results show that the use of a PCM in a solar air heater allows to store greater amounts of energy and it helps to extend the period of time when the air coming out of the collector has an elevated temperature. By increasing the airflow rate, the efficiency of the system increases and also the energy released to the air to be absorbed.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3