Effect of Base Angle of an Isosceles Trapezoidal Solar Air Heater Duct on Flow and Thermal Characteristics—A Numerical Investigation

Author:

Dara Rambabu1,Muvvala Pullarao1

Affiliation:

1. Indian Institute of Information Technology Design and Manufacturing Kurnool Department of Mechanical Engineering, , Kurnool, Andhra Pradesh 518008 , India

Abstract

Abstract This paper reports the computational results of fluid flow and thermal characteristics in an isosceles trapezoidal solar air heater (SAH). By varying the base angle of the trapezoidal duct from 90 deg to 45 deg, six different models of solar air heater ducts are obtained. The six geometries of SAH ducts have cross sections of rectangular (90 deg), triangular (45 deg), and four isosceles trapezoidal (having base angles of 50 deg, 60 deg, 70 deg, and 80 deg) shapes. The solar radiation absorber plate width and the duct heights are maintained constant for all six models of SAH, i.e., 160 mm and 80 mm, respectively. The SAH is subjected to a constant and uniform heat flux value of 1000 W/m2 and Reynolds numbers varied from 5000 to 28,000. In all six cases, the size of the air heater is the same and having dimensions of 0.16 m width and 1 m length. For this investigation, a three-dimensional computational model has been developed and simulations are carried out using commercially available ansys fluent software. The numerical results are validated with the standard correlations and literature data, and a suitable model has been identified for the turbulence closure. A detailed analysis of the Nusselt number, temperature distribution over the SAH, and friction factor across the SAH duct is done. Empirical correlations for the estimation of heat transfer and friction factor have been developed as functions of the base angle of the duct and Reynolds number. An overall performance factor (λ) is adopted to get the combined effect of friction factor and Nusselt number with an intention to arrive at the optimum base angle of the SAH duct, and optimum geometry is identified. Based on the value of λ, it is concluded that the SAH duct with the highest base angle (90 deg) in this investigation, i.e., the rectangular duct, is the optimum among all the ducts considered in the study.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3