Analysis of an Additively Manufactured Cooled Ultra Compact Combustor Vane

Author:

DeMarco Kevin J.1,Bohan Brian T.1,Polanka Marc D.1,Rutledge James L.1,Akbari Pejman2

Affiliation:

1. Air Force Institute of Technology, WPAFB, OH 45433 e-mail:

2. California State Polytechnic University, Pomona, CA 91768 e-mail:

Abstract

The ultra compact combustor (UCC) aims to increase the thrust-to-weight ratio of an aircraft gas turbine engine by decreasing the size, and thus weight, of the engine’s combustor. The configuration of the UCC as a primary combustor enables a unique cooling scheme to be employed for the hybrid guide vane (HGV). A previous effort conducted a computational fluid dynamics (CFD) analysis that evaluated whether it would be possible to cool this vane by drawing in freestream flow at the stagnation region of the airfoil. Based on this study, a cooling scheme was designed and modified with internal supports to make additive manufacturing of the vanes possible. This vane was computationally evaluated comparing the results with those of a solid vane and hollow vane without cooling holes as a demonstration of the improvements offered by this design. Furthermore, the effects of the internal support structure were deemed beneficial to surface cooling when evaluated through comparisons of internal pressure distribution and overall effectiveness. Following the computational study, the vane was manufactured and experimentally evaluated with the results compared to those of an uncooled solid vane. The experimental results validated the computational analysis and demonstrated through pressure and temperature measurements that the cooled vane had a reduced surface temperature compared to the uncooled vane and that pressure distributions supported coolant flow through film-cooling holes.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design Impacts on Ram Air Vane Cooling in an Ultra-Compact Combustor;Journal of Thermal Science and Engineering Applications;2023-06-26

2. Internal cooling sensitivity analysis to improve the thermal performance of gas turbine blade using a developed robust conjugate heat transfer method;International Journal of Engine Research;2022-02-14

3. A New Design of a Pinwheel-Shaped High-G Combustor;Journal of Engineering for Gas Turbines and Power;2021-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3