Design of Nonlinear Rotational Stiffness Using a Noncircular Pulley-Spring Mechanism

Author:

Kim Bongsu1,Deshpande Ashish D.2

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 e-mail:

2. Assistant Professor Mem. ASME Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 e-mail:

Abstract

We present a new methodology for designing a nonlinear rotational spring with a desired passive torque profile by using a noncircular pulley-spring mechanism. A synthesis procedure for the shape of the noncircular pulley is presented. The method is based on an infinitesimal calculus approach that leads to an analytical solution, and the method is extended to address practical design issues related to the cable routing. Based on the synthesis method, an antagonistic spring configuration is designed for bilateral torque generation and is designed such that there is no slack in the routing cables. Two design examples are presented, namely, double exponential torque generation and gravity compensation for an inverted pendulum. Experiments with a mechanism for gravity compensation of an inverted pendulum validate our approach. We extend our approach to generate nonlinear torques at two joints by introducing the concept of torque decomposition. Experiments with a two-link robotic arm show that the gravitational forces from the masses on each link are accurately compensated for with our noncircular pulley-spring mechanisms.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3