Cooling Optimization Theory—Part II: Optimum Internal Heat Transfer Coefficient Distribution

Author:

Kirollos Benjamin1,Povey Thomas1

Affiliation:

1. Osney Thermofluids Laboratory, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK e-mail:

Abstract

Gas turbine cooling system design is constrained by a maximum allowable wall temperature (dictated by the material, the life requirements of the component, and a given stress distribution), the desire to minimize coolant mass flow rate (requirement to minimize cycle-efficiency cost), and the requirement to achieve as close to uniform wall temperature as possible (to reduce thermal gradients, and stress). These three design requirements form the basis of an iterative design process. The relationship between the requirements has received little discussion in the literature, despite being of interest from both a theoretical and a practical viewpoint. In Part I, we show analytically that the coolant mass flow rate is minimized when the wall temperature is uniform and equal to the maximum allowable wall temperature. In this paper, we show that designs optimized for uniform wall temperature have a corresponding optimum internal heat transfer coefficient (HTC) distribution. In this paper, analytical expressions for the optimum internal HTC distribution are derived for a number of cooling systems, with and without thermal barrier coating (TBC). Most cooling systems can be modeled as a combination of these representative systems. The optimum internal HTC distribution is evaluated for a number of engine-realistic systems: long plate systems (e.g., combustors, afterburners), the suction-side (SS) of a high pressure nozzle guide vane (HPNGV), and a radial serpentine cooling passage. For some systems, a uniform wall temperature is unachievable; the coolant penalty associated with this temperature nonuniformity is estimated. A framework for predicting the optimum internal HTC for systems with any distribution of external HTC, wall properties, and film effectiveness is outlined.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3