Affiliation:
1. Osney Thermofluids Laboratory, Department of Engineering Science, University of Oxford, Oxford OX2 0ES, UK e-mail:
Abstract
The continuing maturation of metal laser-sintering technology (direct metal laser sintering (DMLS)) presents the opportunity to derisk the engine design process by experimentally down-selecting high-pressure nozzle guide vane (HPNGV) cooling designs using laboratory tests of laser-sintered—instead of cast—parts to assess thermal performance. Such tests could be seen as supplementary to thermal-paint test engines, which are used during certification to validate cooling system designs. In this paper, we compare conventionally cast and laser-sintered titanium alloy parts in back-to-back experimental tests at engine-representative conditions over a range of coolant mass flow rates. Tests were performed in the University of Oxford Annular Sector Heat Transfer Facility. The thermal performance of the cast and laser-sintered parts—measured using new infrared processing techniques—is shown to be very similar, demonstrating the utility of laser-sintered parts for preliminary engine thermal assessments. We conclude that the methods reported in this paper are sufficiently mature to make assessments which could influence engine development programs.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献