Development of a Soft Pneumatic Sock for Robot-Assisted Ankle Exercise

Author:

Low Fan-Zhe1,Tan Hong Han1,Lim Jeong Hoon2,Yeow Chen-Hua1

Affiliation:

1. Department of Biomedical Engineering, National University of Singapore, Block E4, #04-08, 4 Engineering Drive 3, Singapore 117583, Singapore e-mail:

2. Department of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228, Singapore e-mail:

Abstract

Deep vein thrombosis (DVT) is a severe medical condition that affects many patients around the world, where one of the main causes is commonly associated with prolonged immobilization. Current mechanical prophylaxis systems, such as the compression stockings and intermittent pneumatic compression devices, have yet to show strong efficacy in preventing DVT. The current study aimed to develop a soft pneumatic sock prototype that uses soft extension pneumatic actuators to provide assisted ankle dorsiflexion–plantarflexion motion, so as to prevent the occurrence of DVT. The prototype was evaluated for its efficacy to provide the required dorsiflexion–plantarflexion motion by donning and actuating the prototype on simulated ankle–foot models with various ankle joint stiffness values. Our results showed that the soft extension actuators in the sock prototype provided controllable assisted ankle plantarflexion through actuator extension and ankle dorsiflexion through actuator contraction, where in our study, the actuations extended to 129.9–146.8% of its original length. Furthermore, the sock was able to achieve consistent range of motion at the simulated ankle joint across different joint stiffness values (range of motion: 27.5 ± 6.0 deg). This study demonstrated the feasibility of using soft extension pneumatic actuators to provide robot-assisted ankle dorsiflexion–plantarflexion motion, which will act as an adjunct to physiotherapists to optimize therapy time for bedridden patients and therefore may reduce the risk of developing DVT.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3