A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation

Author:

Miller-Jackson Tiana M.,Natividad Rainier F.,Lim Daniel Yuan Lee,Hernandez-Barraza Luis,Ambrose Jonathan W.,Yeow Raye Chen-Hua

Abstract

Leg motion is essential to everyday tasks, yet many face a daily struggle due to leg motion impairment. Traditional robotic solutions for lower limb rehabilitation have arisen, but they may bare some limitations due to their cost. Soft robotics utilizes soft, pliable materials which may afford a less costly robotic solution. This work presents a soft-pneumatic-actuator-driven exoskeleton for hip flexion rehabilitation. An array of soft pneumatic rotary actuators is used for torque generation. An analytical model of the actuators is validated and used to determine actuator parameters for the target application of hip flexion. The performance of the assembly is assessed, and it is found capable of the target torque for hip flexion, 19.8 Nm at 30°, requiring 86 kPa to reach that torque output. The assembly exhibits a maximum torque of 31 Nm under the conditions tested. The full exoskeleton assembly is then assessed with healthy human subjects as they perform a set of lower limb motions. For one motion, the Leg Raise, a muscle signal reduction of 43.5% is observed during device assistance, as compared to not wearing the device. This reduction in muscle effort indicates that the device is effective in providing hip flexion assistance and suggests that pneumatic-rotary-actuator-driven exoskeletons are a viable solution to realize more accessible options for those who suffer from lower limb immobility.

Funder

National Research Foundation

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference72 articles.

1. A Biologically Inspired Soft Exosuit for Walking Assistance;Asbeck;Int. J. Robotics Res.

2. Biologically-Inspired Soft Exosuit;Asbeck,2013

3. Soft Exosuit for Hip Assistance;Asbeck;Robotics Autonomous Syst.

4. A Soft Robotic Exosuit Improves Walking in Patients after Stroke;Awad;Sci. Transl. Med.,2017

5. Universal Robotic Gripper Based on the Jamming of Granular Material;Brown;Proc. Natl. Acad. Sci. U.S.A.,2010

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3