Theoretical Considerations for Scaling Convection in Overall Effectiveness Experiments

Author:

Bryant Carol E.1,Rutledge James L.2

Affiliation:

1. United States Air Force Academy , Colorado Springs, CO 80840

2. Wright-Patterson Air Force Base Air Force Institute of Technology, , OH 45433

Abstract

Abstract An increasingly common experimental technique allows measurement of overall effectiveness by matching the Biot number between experimental and engine conditions. While much work has been devoted to determining the appropriate flow conditions necessary to scale adiabatic effectiveness, little attention has been paid to subtleties beyond matching the Biot number that arises when performing overall effectiveness experiments. Notably, the ratio of the internal and external heat transfer coefficients must be matched. The density ratio and the specific heat ratio have been shown to play important roles in scaling adiabatic effectiveness; however, now we demonstrate the requirements for the coolant and freestream flow conditions required to conduct an appropriately scaled overall effectiveness experiment. Since the viscosity and thermal conductivity of the fluids influence heat transfer coefficient behavior, this gives rise to an additional nondimensional parameter that should be matched to properly perform an overall effectiveness experiment. In this paper, we demonstrate that this new nondimensional parameter will be matched provided that Pr∞, Prc, and Rec are matched in addition to Re∞ and the advective capacity ratio. We demonstrate the validity of this requirement through computational fluid dynamics simulations, which are well-suited for this since over-constrained requirements can be overcome by altering gas properties. Simulations of an internally cooled wall exposed to a hot freestream were performed with various gases to show the sensitivity of the overall effectiveness to these previously ignored requirements. An additional set of simulations on a film-cooled plate reveals additional complexities when coolant mixes with the freestream gas.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3