Scaling Flat-Plate, Low-Temperature Adiabatic Effectiveness Results Using the Advective Capacity Ratio

Author:

Fischer Jacob P.1,McNamara Luke J.1,Rutledge James L.2,Polanka Marc D.2

Affiliation:

1. Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

2. Air Force Institute of Technology, Wright-Patterson AFB, OH 45433

Abstract

Abstract Design of film-cooled engine components requires the ability to predict behavior at engine conditions through low-temperature testing. The adiabatic effectiveness, η, is one indicator film cooling performance. An experiment to measure η in a low-temperature experiment requires appropriate selection of the coolant flowrate. The mass flux ratio, M, is usually used in lieu of the velocity ratio to account for the fact that the coolant density is larger than that of the hot freestream at engine conditions. Numerous studies have evaluated the ability of M to scale η with mixed results. The momentum flux ratio, I, is an alternative also found to have mixed success, leading some to recommend matching the density ratio to allow simultaneous matching of M and I. Nevertheless, inconsistent results in the literature regarding the efficacy of these coolant flowrate parameters to scale the density ratio suggest other properties also play a role. Experiments were performed to measure η on a flat plate with a 7-7-7-shaped hole. Various coolant gases were used to give a large range of property variations. We show that a relatively new coolant flowrate parameter that accounts for density and specific heat, the advective capacity ratio, far exceeds the ability of either M or I to provide matched η between the various coolant gases that exhibit extreme property differences. With the specific heat of coolant in an engine significantly lower than that of the freestream, advective capacity ratio (ACR) is appropriate for scaling η with non-separating coolant flow.

Funder

Air Force Research Laboratory

Department of Defense

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3