Compensation Modeling and Optimization on Contactless Rotary Transformer in Rotary Ultrasonic Machining

Author:

Zhang Jianguo1,Long Zhili1,Wang Can1,Zhao Heng1,Li Yangmin2

Affiliation:

1. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518000, Guangdong, China

2. Department of Industrial and System Engineering, Hong Kong Polytechnic University, Kowloon 999077, Hong Kong

Abstract

Abstract Rotary ultrasonic machining (RUM) is an effective solution to cut, grind, or drill the advanced brittle hard materials. Contactless rotary transformer, with the advantages of high-power transmission efficiency and reliability, is a potential structure to transmit electric power in RUM. In this study, an impedance model of rotary ultrasonic holder (RUH) is established to find that there exist deviations for the resonant frequency and impedance between the RUH and the ultrasonic transducer, indicating that without compensation the ultrasonic transducer cannot find precisely its own resonant frequency by sweeping frequency. To match the resonant frequency and impedance, four compensation topologies are compared and the Series-Series (SS) topology is discovered as the most suitable option. The compensated capacitance values are determined by visualized solution from the contour line method. Both simulation (from matlab–simulink) and experimental results validate that with compensation elements, the resonant frequency and impedance can be matched precisely between the RUH and ultrasonic transducer and the output voltage and current are with better dynamic performance. Moreover, with the same input voltage, the received power of ultrasonic transducer with compensation capacitors is 7.4 times than the one without compensation. Results verify that the compensation optimization of contactless rotary transformer can improve the vibration amplitude in RUM.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3