Fundamental Machining Characteristics of Ultrasonic-Assisted Electrochemical Grinding of Ti–6Al–4V

Author:

Li Sisi1,Wu Yongbo2,Nomura Mitsuyoshi3,Fujii Tatsuya3

Affiliation:

1. Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Yurihonjo, Akita 015-0055, Japan; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China

2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Yurihonjo, Akita 015-0055, Japan e-mail:

3. Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Yurihonjo, Akita 015-0055, Japan

Abstract

The Ti–6Al–4V is a widely used alloy in the aerospace industry. In order to improve the grindability of Ti–6Al–4V, a hybrid material removal process is proposed in this study. This process is a combination of ultrasonic assisted grinding (UAG) and electrochemical grinding (ECG), hereafter called ultrasonic assisted electrochemical grinding (UAECG). For confirming the feasibility of the proposed technique, an experimental setup was constructed and the fundamental machining characteristics of UAECG in the grinding of Ti–6Al–4V were experimentally investigated. The results obtained from the investigation can be summarized as follows: (1) the normal and tangential forces in UAECG were decreased approximately 57% and 56%, respectively, comparing with conventional grinding (CG). (2) The work-surface roughness Ra both in ECG and UAECG was negative correlation to the electrolytic voltage, UI, and the surface damage; (3) the wheel radius wear in UAECG was considerably smaller than that in ECG when UI < 10 V. The chip adhesion and the grain fracture mainly affected the working lives of the wheels in ECG and UAECG, whereas the wheel wear in CG was predominantly attributed to the grain drop out; (4) a titanium dioxide (TiO2) layer, which had a 78 nm thickness was achieved on the work surface in the condition of UI = 20 V, leading that the Vickers microhardness of work surface in ultrasonic assisted electrochemical was lower than that in CG by 15%.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3