Design of Honeycomb Mesostructures for Crushing Energy Absorption

Author:

Schultz Jesse1,Griese David2,Ju Jaehyung3,Shankar Prabhu4,Summers Joshua D.2,Thompson Lonny2

Affiliation:

1. Force Protection, Summerville, SC 29483

2. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921

3. Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX76207

4. JLG Industries, Inc., Hagerstown, MD 21742

Abstract

This paper presents the energy absorption properties of hexagonal honeycomb structures of varying cellular geometries under high speed in-plane crushing. While the crushing responses in terms of energy absorption and densification strains have been extensively researched and reported, a gap is identified in the generalization of honeycombs with contr’olled and varying geometric parameters. This paper addresses this gap through a series of finite element (FE) simulations where the cell angle and the inclined wall thickness, are varied while maintaining a constant mass of the honeycomb structure. A randomly filled, nonrepeating design of experiments (DOEs) is generated to determine the effects of these geometric parameters on the output of energy absorbed and a statistical sensitivity analysis is used to determine the parameters significant for the crushing energy absorption of honeycombs. It is found that while an increase in the inclined wall thickness enhances the energy absorption of the structure, increases in either the cell angle or ratio of cell angle to inclined wall thickness have adverse effects on the output. Finally, the optimization results suggest that a cellular geometry with a positive cell angle and a high inclined wall thickness provides for maximum energy absorption, which is verified with a 6% error when compared to a FE simulation.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3