Affiliation:
1. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
Abstract
Due to the influence of mass law, traditional lightweight sandwich structures have struggled to surpass solid structures in sound insulation performance. To this end, we propose an acoustic metamaterial structure with a sandwich configuration based on the re-entrant negative Poisson’s ratio (NPR) structure and systematically investigate its sound transmission loss (STL) performance under incident plane wave conditions. We used the acoustic impedance tube method to experimentally study the sound insulation performance of the re-entrant NPR sandwich structure under free boundary conditions, and then established an acoustic analysis simulation model based on COMSOL Multiphysics software, which verified that the results obtained by the experiment and the numerical simulation were in good agreement. The results show that the sandwich structure exhibits excellent sound transmission loss performance in the studied frequency range (250–4000 Hz), and the overall sound insulation performance exceeds the curve of the mass theorem, basically achieving more than 20 dB when the sandwich thickness is 2 cm. Finally, we conduct parametric studies to establish a correlation between the geometric design of NPR sandwich structures and their sound transmission loss performance. The research shows that the changes of the length of the ribs, the distance from the ribs to the center of the unit, and the length of the upper wall and the lower wall have a significant impact on the sound insulation performance of the re-entrant NPR sandwich structure, while the change of the wall thickness basically will not affect the sound insulation performance of the sandwich structure. This research can provide practical ideas for the engineering application of noise suppression designs of lightweight structures.
Funder
National Natural Science Foundation of China
Science and Technology Program of Guangzhou
GZHU-HKUST joint research fund
Subject
General Materials Science
Reference37 articles.
1. Ranjie, D. (2019). High-Speed Railway Environmental Noise Annoyance Study Based on Auto-Correlation Function and Interaural Cross-Correlation Function. [Master’s Thesis, South China University of Technology].
2. Auditory and non-auditory effects of noise on health;Basner;Lancet,2014
3. 350 km·h~(−1)Noise mechanism, sound source identification and control of high-speed train;Shuguang;Chin. Railw. Sci.,2009
4. Controlling sound with acoustic metamaterials;Cummer;Nat. Rev. Mater.,2016
5. Prospects of acoustic metamaterials for acoustic stealth;Weilong;Chin. J. Ship Res.,2020
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献