Nadal’s Formula and High Speed Rail Derailments

Author:

Shabana Ahmed A.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607

Abstract

Several railroad vehicle derailment criteria are based on the (L/LVV) ratio where L is the lateral force and V is the vertical force acting on the wheelset. Derailment is assumed to occur if this ratio exceeds a certain limit. The (L/LVV) ratio has its roots in Nadal’s formula which was introduced more than a century ago. When a planar analysis that corresponds to zero angle of attack is used, Nadal’s formula can be derived using a geometric approach, while a Nadal-like formula can be derived using a kinetic approach. In the geometric approach, a coordinate transformation is used to define the normal and friction forces in another coordinate system. In this case, the lateral and vertical forces are interpreted as the components of a vector that defines the normal and friction forces in another coordinate system without consideration of other external forces that are applied to the wheelset. Because the geometric approach does not account for other forces, it should not be used as the basis for derailment studies. In the kinetic approach, on the other hand, the L and V forces are interpreted as the resultant of the forces excluding the normal and friction forces at the contact point. That is, in both approaches discussed in this paper, the L and V forces cannot be interpreted as the resultant forces acting on the wheelset. The condition for the wheel climb using the kinetic approach is obtained and examined. It is shown that formulas obtained in this paper are based on assumptions that do not capture the gyroscopic moments, and therefore, these formulas should not be used as the basis for general high speed rail derailment criteria. It is also shown that in the case of zero angle of attack and using single degree of freedom planar kinetic model assumptions, an increase in the lateral force L can reduce the tendency for wheel climb, while reducing L can increase the wheel climb risk. Furthermore, the single degree of freedom assumptions used to obtain the wheel climb formula presented in this paper do not allow for wheel lift, and as a consequence, wheel lift derailment scenarios that can be the result of large moment should not be investigated using Nadal’s formula or one of its derivatives that employ the same assumptions. Furthermore, since the analysis presented in this paper assumes zero angle of attack, the conclusions obtained in this investigation do not apply to the wheel climb scenarios with nonzero angle of attack. It is also important to point out that this paper is not intended as a discussion on how Nadal’s formula is interpreted by researchers and engineers; instead, the paper is mainly focused on examining the roots of this formula and the problems that can arise from the assumptions used in its derivation.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference17 articles.

1. Development of Simulation of a High Speed Vehicle for a Derailment Mechanism;Wang;IMechE J, Rail Rapid Transit

2. Study on the Wheel/Rail Interaction and Derailment Safety;Zeng;Wear

3. Blader, F. B. , 1990, “A Review of Literature and Methodologies in the Study of derailment Caused by Excessive Forces at the Wheel/Rail Interface,” Association of American Railroads, AAR Report No. R-717, Washington, D.C.

4. Elkins, J., and Wu, H., 2000, “New Criteria for Flange Climb Derailment,” IEEE/ASME Joint Rail Conference, April 4–6, 2000, Newark, NJ.

5. Application of Nadal Limit in the Prediction of Wheel Climb Derailment;Marquis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3