Combined Influence of Fluid Viscoelasticity and Inertia on Forced Convection Heat Transfer From a Circular Cylinder

Author:

Sasmal C.1,Khan Mohd Bilal1,Chhabra R. P.1

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India

Abstract

AbstractIn this study, the combined influence of fluid viscoelasticity and inertia on the flow and heat transfer characteristics of a circular cylinder in the steady laminar flow regime have been studied numerically. The momentum and energy equations together with an appropriate viscoelastic constitutive equation have been solved numerically using the finite volume method over the following ranges of conditions: Reynolds number, 0.1≤Re≤20; elasticity number (= Wi/Re, where Wi is the Weissenberg number), 0≤El≤0.5; Prandtl number, 10≤Pr≤100 for Oldroyd-B and finitely extensible nonlinear elastic-Peterlin (FENE-P) (with two values of the chain extensibility parameter L2, namely 10 and 100) viscoelastic fluid models including the limiting case of Newtonian fluids (El = 0). New extensive results are presented and discussed in terms of the streamline and isotherm profiles, drag coefficient, distribution of the local and surface averaged Nusselt number. Within the range of conditions embraced here, the separation of boundary layers (momentum and thermal) is seen to be completely suppressed in an Oldroyd-B fluid whereas it is accelerated for a FENE-P fluid in comparison with that seen for a Newtonian fluid otherwise under identical conditions. At a fixed elasticity number, both the drag coefficient and average Nusselt number are seen to be independent of the Reynolds number beyond a critical value for an Oldroyd-B fluid. In contrast, the drag coefficient decreases and the average Nusselt number increases with Reynolds number for a FENE-P fluid at a constant value of the elasticity number. Finally, a simple correlation for the average Nusselt number for a FENE-P fluid is presented which facilitates the interpolation of the present results for the intermediate values of the governing parameters and/or its a priori estimation in a new application.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3