Elastoviscoplastic flows past a cylinder: Fluid-mechanical aspects and dynamic mode decomposition analysis

Author:

Raffi Sana,Chauhan A.ORCID,Hamid F.ORCID,Sasmal C.ORCID

Abstract

When undergoing deformation, elastoviscoplastic fluids exhibit simultaneous viscous, elastic, and plastic characteristics. This study presents an extensive numerical investigation into how the combined elasticity and plasticity of such fluids influence the flow dynamics past a circular cylinder in the laminar vortex-shedding regime. By varying dimensionless numbers, such as the Weissenberg and Bingham numbers, this study elucidates their effects on various fluid-mechanical aspects, including streamlines, vorticity, drag and lift forces, and vortex-shedding frequency. The results show significant differences in the vortex street length, width, and shedding frequency downstream of the cylinder when both fluid elasticity and plasticity are present, compared to Newtonian fluids or fluids with only elasticity under the same flow conditions. Notably, flow field fluctuations are suppressed as fluid elasticity increases, an effect further accentuated by the introduction of fluid plasticity. These rheological behaviors also have a pronounced effect on the drag and lift forces acting on the cylinder. In particular, the drag forces increase with the Weissenberg and Bingham numbers while lift forces decrease. Furthermore, this study conducts the dynamic mode decomposition (DMD) analysis, a widely used reduced order modeling technique, to obtain insights into the coherent flow structures associated with the time-resolved vorticity fields for various fluids. This analysis uncovers hidden differences in the downstream vorticity structures of various fluid types using only a few DMD modes, differences that are not apparent from simple vorticity plots alone. Overall, the findings of this study are valuable for manipulating fluid-dynamical aspects, particularly the vortex-shedding phenomenon from bluff bodies, which is observed in many practical applications and natural processes.

Funder

Ministry of Education, Government of India

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3