Analytical Predictions of the Air Gap Response of Floating Structures

Author:

Manuel Lance1,Sweetman Bert2,Winterstein Steven R.2

Affiliation:

1. Department of Civil Engineering, University of Texas at Austin, Austin, TX 78712

2. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305

Abstract

Two separate studies are presented here that deal with analytical predictions of the air gap for floating structures. 1) To obtain an understanding of the importance of first and second-order incident and diffracted wave effects as well as to determine the influence of the structure’s motions on the instantaneous air gap, statistics of the air gap response are studied under various modeling assumptions. For these detailed studies, a single field point is studied here—one at the geometric center (in plan) of the Troll semi-submersible. 2) A comparison of the air gap at different locations is studied by examining response statistics at different field points for the semi-submersible. These include locations close to columns of the four-columned semi-submersible. Analytical predictions, including first and second-order diffracted wave effects, are compared with wave tank measurements at several locations. In particular, the gross root-mean-square response and the 3-h extreme response are compared.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference11 articles.

1. Winterstein, S. R., and Sweetman, B., 1999, “Air Gap Response of Floating Structures: Statistical Predictions vs Observed Behavior,” Proc. ASME Paper No. OMAE 99-6042.

2. WAMIT, 4.0, 1995, “WAMIT: A Radiation-Diffraction Panel Program for Wave-Body Interaction—Users’ Manual,” Department of Ocean Engineering, M.I.T., Cambridge, MA.

3. Naess, A. , 1986, “The Statistical Distribution of Second-Order Slowly Varying Forces and Motions,” Appl. Ocean. Res., 8, pp. 110–118.

4. Naess, A., 1992, “Prediction of Extremes Related to the Second-Order, Sum-Frequency Responses of a TLP,” Proc. 2nd International Offshore Polar Engineering, ISOPE, pp. 436–443.

5. Winterstein, S. R., Ude, T. C., and Kleiven, G., 1994, “Springing and Slow-Drift Responses: Predicted Extremes and Fatigue vs. Simulation,” Proc., BOSS-94, Vol. 3, pp. 1–15.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3