Affiliation:
1. ELOP Electro-Optics Industries Ltd., P.O. Box 1165, Rehovot 76111, Israel
Abstract
The present study proposes a unified numerical approach to the problem of optimum design of the thermoelectric devices for cooling electronic components. The standard mathematical model of a single-stage thermoelectric cooler (TEC) with constant material properties is employed. The model takes into account the thermal resistances from the hot and cold sides of the TEC. Values of the main physical parameters governing the TEC performance (Seebeck coefficient, electrical resistance, and thermal conductance) are derived from the manufacturer catalog data on the maximum achievable temperature difference, and the corresponding electric current and voltage. The optimization approach is illustrated with several examples for different design objective functions, variables, and constraints. The objective for the optimization search is the maximization of the total cooling rate or the performance coefficient of the cooling device. The independent variables for the optimization search are as follows: The number of the thermoelectric modules, the electric current, and the cold side temperature of the TEC. Additional independent variables in other cases include the number of thermoelectric couples and the area-to-height ratio of the thermoelectric pellet. In the present study, the optimization problems are solved numerically using the so-called multistart adaptive random search method.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献