Affiliation:
1. 734.763.4916
2. Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109
3. Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609
Abstract
This paper investigates the drawbacks of typical flexure connectors and presents several new designs for highly effective, kinematically well-behaved compliant joints. A revolute and a translational compliant joint are proposed, both of which offer great improvements over existing flexures in the qualities of (1) a large range of motion, (2) minimal “axis drift,” (3) increased off-axis stiffness, and (4) a reduced stress-concentrations. Analytic stiffness equations are developed for each joint and parametric computer models are used to verify their superior stiffness properties. A catalog of design charts based on the parametric models is also presented, allowing for rapid sizing of the joints for custom performance. A joint range of motion has been calculated with finite element analysis, including stress concentration effects.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
259 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献