Design of High-Performance Triple-Axis Cross Pivots

Author:

Serafino Simone11,Bruzzone Luca1,Fanghella Pietro1,Verotti Matteo1

Affiliation:

1. University of Genoa Department of Mechanical, Energy, Management and Transport Engineering, , Via all’Opera Pia 15, Genoa 16145 , Italy

Abstract

Abstract Cross-axis flexural pivots are increasingly implemented in mechanical systems due to their high precision and wide range of motion. However, designing high-performance pivots in terms of low-axis drift, low rotational stiffness, and low values of maximum stress remains a challenging task. In fact, these features often behave antagonistically to each other. In this paper, the design of a novel family of high-performance cross-axis pivots is presented. The compliant joints are obtained by the composition of two crossing flexible elements with initially curved axis, and of one auxiliary flexure with straight axis. Two different arrangements, that depend on the constraints layout, are proposed. Chained beam constraint model and nonlinear finite element analysis are implemented for the analysis of the kinetostatic response of the pivots. The effects of initial curvature and orientation of the flexures on axis drift, stiffness, and maximum stress, are investigated and reported in the form of design maps. A global performance index, that embodies the above-mentioned features and captures the overall kinetostatic behavior of the pivot, is introduced. The design maps and the global index serve as key tools for the design procedure, giving insight into the antagonistic issue and leading to the determination of the best tradeoff solutions that meet the application requirements. An experimental campaign is conducted to compare the performance improvement of triple-axis pivots with respect to a benchmark double-axis joint, and to validate the design method.

Publisher

ASME International

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3