Architecture-Driven Physics-Informed Deep Learning for Temperature Prediction in Laser Powder Bed Fusion Additive Manufacturing With Limited Data

Author:

Ghungrad Suyog1,Faegh Meysam1,Gould Benjamin2,Wolff Sarah J.3,Haghighi Azadeh1

Affiliation:

1. University of Illinois Chicago Department of Mechanical and Industrial Engineering, , Chicago, IL 60607

2. Argonne National Laboratory Applied Materials Division, , Lemont, IL 60439

3. Ohio State University Department of Mechanical and Aerospace Engineering, , Columbus, OH 43210

Abstract

Abstract Physics-informed deep learning (PIDL) is one of the emerging topics in additive manufacturing (AM). However, the success of previous PIDL approaches is generally significantly dependent on the existence of massive datasets. As the data collection in AM is usually challenging, a novel Architecture-driven PIDL structure named APIDL based on the deep unfolding approach for limited data scenarios has been proposed in the current study for predicting thermal history in the laser powder bed fusion process. The connections in this machine learning architecture are inspired by iterative thermal model equations. In other words, each iteration of the thermal model is mapped to a layer of the neural network. The hyper-parameters of the APIDL model are tuned, and its performance is analyzed. The APIDL for 1000 points with 80:20 split ratio achieves testing mean absolute percentage error (MAPE) of 2.8% and R2 value of 0.936. The APIDL is compared with the artificial neural network, extra trees regressor (ETR), support vector regressor, and long short-term memory algorithms. It was shown that the proposed APIDL model outperforms the others. The MAPE and R2 of APIDL are 55.7% lower and 15.6% higher than the ETR, which had the best performance among other pure machine learning models.

Funder

Argonne National Laboratory

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3