A Machine Learning Framework for Melt-Pool Geometry Prediction and Process Parameter Optimization in the Laser Powder-Bed Fusion Process

Author:

Rahman M. Shafiqur1,Sattar Naw Safrin2,Ahmed Radif Uddin1,Ciaccio Jonathan3,Chakravarty Uttam K.3

Affiliation:

1. Louisiana Tech University Department of Mechanical Engineering, , 505 Tech Dr., Ruston, LA 71270

2. Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, TN 37830

3. University of New Orleans Department of Mechanical Engineering, , 2000 Lakeshore Drive, New Orleans, LA 70148

Abstract

Abstract This study presents a cost-effective and high-precision machine learning (ML) method for predicting the melt-pool geometry and optimizing the process parameters in the laser powder-bed fusion (LPBF) process with Ti-6Al-4V alloy. Unlike many ML models, the presented method incorporates five key features, including three process parameters (laser power, scanning speed, and spot size) and two material parameters (layer thickness and powder porosity). The target variables are the melt-pool width and depth that collectively define the melt-pool geometry and give insight into the melt-pool dynamics in LPBF. The dataset integrates information from an extensive literature survey, computational fluid dynamics (CFD) modeling, and laser melting experiments. Multiple ML regression methods are assessed to determine the best model to predict the melt-pool geometry. Tenfold cross-validation is applied to evaluate the model performance using five evaluation metrics. Several data pre-processing, augmentation, and feature engineering techniques are performed to improve the accuracy of the models. Results show that the “Extra Trees regression” and “Gaussian process regression” models yield the least errors for predicting melt-pool width and depth, respectively. The ML modeling results are compared with the experimental and CFD modeling results to validate the proposed ML models. The most influential parameter affecting the melt-pool geometry is also determined by the sensitivity analysis. The processing parameters are optimized using an iterative grid search method employing the trained ML models. The presented ML framework offers computational speed and simplicity, which can be implemented in other additive manufacturing techniques to comprehend the critical traits.

Funder

Louisiana Board of Regents

National Science Foundation

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3