Effects of Ball’s Rolling, Gyroscopic, and Spin Slide in a Ball Bearing on Raceway’s Stress and Fatigue Life

Author:

Chen Zhuang1,Chen Guanci1

Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Abstract The motions between the ball and raceway in a ball bearing involve rolling, gyroscopic, and spin slide. These complex motions result in the serious distribution of the friction force. Based on the contact mechanics in tribology, the friction force greatly affects stress and fatigue life. Thus, it is necessary to figure out the effects of the motions and its friction force of ball–raceway contact on the fatigue life of a ball bearing. In this paper, first, the equivalent model of ball–raceway contact was studied and established for the convenience of finite element calculation. Second, the contact mechanics considering the friction force with the friction coefficient from 0 to 0.3 was computed. The influences of the motions and its friction forces of ball–raceway contact on the raceway’s stress were analyzed. Third, based on different structure fatigue life algorithms, the raceway’s fatigue life of the cases with the friction coefficient 0, 0.05, 0.1, and 0.3 were studied. The raceway’s fatigue life based on ISO 281-2007 bearing life theory is studied. Results show that the friction force on the contact surface has some influence on the stress and fatigue life to a certain extent. Especially, the ball’s spin has the greatest influence on the stress distribution and fatigue life of the raceway. Thus, for the cases of heavy load and high friction coefficient, the effect of the friction force of ball–raceway contacts cannot be neglected.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference21 articles.

1. Material Stressing Under Rolling Contact—Influence of Friction and Residual Stresses;Zwirlein;Zeitschrift fuer Werkstofftechnik/Materials Technology and Testing,1980

2. Rough Contact Between Elastically and Geometrically Identical Curved Bodies;Bryant;ASME J. Appl. Mech.,1982

3. Surface Mechanics Induced Stress Disturbances in an Elastic Half-Space Subjected to Tangential Surface Loads;Mi;Eur. J. Mech.—A/Solids,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3