Direct Numerical Simulations of Horizontally Oblique Flows Past Three-Dimensional Circular Cylinder Near a Plane Boundary

Author:

Ji Chunning12,Zhang Zhimeng3,Xu Dong3,Srinil Narakorn4

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China;

2. Key Laboratory of Earthquake Engineering, Simulation and Seismic Resilience of China Earthquake Administration, Tianjin University, Tianjin 300350, China

3. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

4. School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Abstract

Abstract Understanding hydrodynamics of a free-spanning pipeline subjected to omni-directional flows is important to engineering design. In this study, horizontally oblique flows past a three-dimensional circular cylinder in the vicinity of a plane boundary are numerically investigated using direct numerical simulations. Parametric studies are carried out at the normal Reynolds number of 500, a fixed gap-to-diameter ratio of 0.8 and five flow inclination angles (α) ranging from 0 deg to 60 deg with an increment of 15 deg. Two distinct vortex-shedding modes are observed: parallel (α ≤ 15 deg) and oblique (α ≥ 30 deg) vortex shedding. The wake evolution is further divided into two or three stages depending on α. The occurrence of the oblique vortex shedding is accompanied by the base pressure gradient along the cylinder span and the resultant axial flows near the cylinder base. The total hydrodynamic drag and lift force coefficients decrease from being the parallel mode to the oblique mode, owing to the intensified three-dimensionality of wake flows and the phase differences in the spanwise vortex shedding. The independence principle (IP) is found to be valid in predicting hydrodynamic forces and wake patterns when α ≤ 15 deg. This IP might produce unacceptable errors when α > 15 deg. In comparison with the mean drag force, the fluctuating lift force is more sensitive to the inclination angle. The IP validity range is substantially smaller than that in the case of flow past a wall-free cylinder. Such finding would be practically useful for vortex-induced vibration prediction.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3