A Versatile Cam Profile for Controlling Interface Force in Multiple-Dwell Cam-Follower Systems

Author:

Flocker Forrest W.1

Affiliation:

1. Department of Engineering and Technology, University of Texas of the Permian Basin, 4901 E. University, Odessa, TX 79762

Abstract

Cam follower systems are widely used in manufacturing because of their precise motion and ability to easily dwell. The cam typically drives a follower in some precise motion needed to accomplish a manufacturing task. Presented in this paper is a closed-form modified trapezoidal cam motion function with adjustable positive and negative acceleration. The profile is suitable for multiple-dwell cam and follower applications. The profile is particularly applicable to high-speed cams in which the follower acceleration is a primary design objective. The main benefit of the profile is that it allows cam designers to easily set limits on the positive and negative acceleration to achieve design objectives. Additional benefits are that the cycle jerk is continuous and that the cam designer can control the maximum magnitude of jerk. The motion program is presented in closed-form for easy implementation in standard equation-solver or spreadsheet software. Dynamic and harmonic analyses are presented to illustrate the benefits of the profile.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3