Design and optimization of complex mechanism flip shaping subsystem based on genetic algorithm and rigid-flexible coupled dynamic model

Author:

Xin SHANGORCID,LI Yongxing,CHEN Xiaoxuan

Abstract

In this paper, the cam connecting rod system of the high-speed group vertical machine flipping shaping mechanism is the research object. In order to solve the key problem that the flipping shaping mechanism cannot accurately complete the action when the vibration of the mechanism is large. In this paper, the finite element method is used to construct the dynamic model of the connecting rod subsystem of the flipped shaping mechanism. And The dynamic model of cam roller subsystem is established by centralized parameter method. Based on the MATLAB Genetic Algorithm toolbox and using Newmark’s method, the dynamic equations of the flipped plastic mechanism system are solved. The optimal parameters of the connecting rod of the mechanism, the cam profile curve and the swing power and swing torque of the mechanism at different speeds are analyzed. The results show that the speed and convex contour line are important factors affecting the performance of the mechanism. And the pendulum force (swing torque) is the main cause of the vibration of the mechanism on the frame. Therefore, the mechanism pendulum dynamic and the swing moment are selected as the objective functions of the optimization model. By selecting the node parameters of the sixth order spline motion law and the cross-section parameters of the connecting rod as the design variables. The cam linkage system is optimally designed to obtain the optimal value. Finally, the optimal design of the flipped shaping mechanism was analyzed and compared with the original mechanism.

Funder

Key-Area Research and Development Program of Guangdong Province

Dongguan Sci-tech Commissioner

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. Analysis of Torsional Vibration Characteristics of Engine Crankshaft System Based on Centralized Mass Method[J];LIU Yi-fu;Machinery Design & Manufacture,2021

2. A study on the on-line monitoring methods of the torsional vibration of rotor-bearing system[J];Zhang Kun;Mechanical Design and Manufacture,2017

3. Design torsional vibration damper of engine based on classical optimal approach[J];Deng Lin;Machinery Design & Manufacture,2016

4. Dynamic analysis of a flexible rotor supported by ball bearings with damping rings based on FEM and lumped mass theory[J];ZHU Hai-min;J. Cent. South Univ,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3