Stability of Non-Axisymmetric Rotor and Bearing Systems Modeled With Three-Dimensional-Solid Finite Elements

Author:

Oh Joseph1,Palazzolo Alan1,Hu Lingnan1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843

Abstract

Abstract Although rotors are simplified to be axisymmetric in rotordynamic models, many rotors in the industry are actually non-axisymmetric. Several authors have proposed methods using 3D finite element, rotordynamic models, but more efficient approaches for handling a large number of degrees-of-freedom (DOF) are needed. This task becomes particularly acute when considering parametric excitation that results from asymmetry in the rotating frame. This paper presents an efficient rotordynamic stability approach for non-axisymmetric rotor-bearing systems with complex shapes using three-dimensional solid finite elements. The 10-node quadratic tetrahedron element is used for the finite element formulation of the rotor. A rotor-bearing system, matrix differential equation is derived in the rotor-fixed coordinate system. The system matrices are reduced by using Guyan reduction. The current study utilizes the Floquet theory to determine the stability of solutions for parametrically excited rotor-bearing systems. Computational efficiency is improved by discretization and parallelization, taking advantage of the discretized monodromy matrix of Hsu's method. The method is verified by an analytical model with the Routh–Hurwitz stability criteria, and by direct time-transient, numerical integration for large order models. The proposed and Hill's methods are compared with respect to accuracy and computational efficiency, and the results indicate the limitations of Hill's method when applied to 3D solid rotor-bearing systems. A parametric investigation is performed for an asymmetric Root's blower type shaft, varying bearing asymmetry and bearing damping.

Publisher

ASME International

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3