Characterization of Annular Cement Permeability of a Logged Well Section Using Pressure–Pulse Decay Measurements

Author:

Skadsem Hans Joakim12

Affiliation:

1. Department of Energy and Petroleum Engineering, University of Stavanger, P. O. Box 8600, Stavanger, Norway;

2. NORCE Norwegian Research Centre AS, P. O. Box 8046, Stavanger, Norway

Abstract

Abstract The cement behind casings is an important barrier element in wells that should provide zonal isolation along the well. The hardened cement does not always isolate permeable formations, either due to placement issues or loads that over time compromise the integrity of the barrier. The modern method used to characterize the annular material is ultrasonic logging which provides essential information concerning the type of material behind casing, but no measurement of the annular permeability. This study provides permeability characterization of a casing-cement sandwich joint retrieved from a 33 years old production well that has been logged at surface using a state-of-the-art ultrasonic tool. The joint contains an interval of low-permeable cement that previously has prevented permeability measurement by gas injection. A pressure–pulse decay test method has now been performed that is based on monitoring the evolution of a pressure pulse through the joint. Long-term pressure measurements show communication through the entire joint and are in qualitative agreement with the log. A pressure diffusion model is used to estimate local permeability along the joint, enabling comparison of log response and permeability. The low-permeable region is relatively short, situated directly on top of a casing collar, and has permeability that is orders of magnitude lower than the cement above and below. In the longer term, results from this and related studies can be used as input for future sustained casing pressure evaluations or for quantifying seepage risk behind casings for abandonment designs.

Funder

Norges Forskningsråd

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference39 articles.

1. Experimental and Finite Element Modelling Evaluation of Cement Integrity Under Diametric Compression;Wu;J. Petrol. Sci. Eng.,2020

2. Sustained Casing Pressure in Offshore Producing Wells;Bourgoyne,1999

3. Oil and Gas Wells and Their Integrity: Implications for Shale and Unconventional Resource Exploitation;Davies;Marine Petrol. Geol.,2014

4. Displacement Mechanics in Primary Cementing;McLean;J. Pet. Technol.,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3