Displacement Mechanics in Primary Cementing

Author:

McLean R.H.1,Manry C.W.1,Whitaker W.W.1

Affiliation:

1. Esso Production Research Co.

Abstract

Abstract In an eccentric annulus, cement may favor the widest side and bypass slower-moving mud in the narrowest side. Tendency of the cement to bypass mud is a function of the geometry of the annulus, the density and flow properties of the mud and cement and the rate of flow. Bypassing can be prevented if the pressure gradient produced from circulation of the cement and buoyant forces exceeds the pressure gradient necessary to drive the mud through the narrowest side of the annulus at the same velocity as the cement. In the absence of buoyant forces, one requirement for this balance is maintenance of the yield strength of the cement greater than the yield strength of the mud multiplied by the maximum distance from the casing to the wall of the borehole and divided by the minimum distance. If the yield strength of the cement is below this value, bypassing of mud cannot be prevented unless buoyant forces or motion of the caving significantly aid the displacement. Introduction Successful primary cementing leaves no continuous channels of mud capable of flow during well treatment and production. Prevention of channels requires care. Teplitz and Hassebroek provide evidence of channels of mud after primary cementing in the field. Channeling of cement through mud in laboratory experiments has also been reported. Recommendations for improving the displacement of mud includecentralizing the casing in the borehole,attaching centralizers and scratchers to the casing and moving it during displacement,thinning the mud,isolating the cement by plugs while it is circulated down the casing,establishing turbulence in the cement, andholding the cement slurry at least 2 lb /gal heavier than the mud and circulating the cement slurry at a very low rate of flow. Although much has been written about the above parameters, the relative importance of each has not been well defined. In this investigation, the mechanics of mud displacement are described through results from analytical models and experiments. The model chosen-a single string of casing eccentric in a round, smooth-walled, impermeable borehole-is analagous to casing centralized in a borehole which is not round and to placing more than one string of casing in a borehole. In each, some paths for flow are more restricted than others. A fluid flowing in the borehole may seek the least restricted, or most open, path. This tendency for uneven flow can lead to channeling of cement through mud unless preventive measures are taken. The analytical models describe channeling and give means of balancing the flow. Experimental data test the analytical models and illustrate effects of motion of the casing, differences in density and mud's tendency to gel. Results are encouraging. Piston-like displacement of mud by an equal density cement slurry is possible through proper balance of the flow properties of the mud and cement slurries to the eccentricity of the annulus. The more eccentric the annulus, the thicker must be the cement relative to the mud. If proper balance is not achieved, bypassing of mud by cement cannot be prevented without assistance from motion of the casing or buoyant forces. Increasing the rate of flow can help to start all mud flowing but cannot prevent channeling of cement through slower moving mud in an eccentric annulus. Thinning the cement slurry tends to increase channeling although the extent of turbulence in the annulus may be increased. Description of flow in an eccentric annulus begins in the next section. It is assumed thatthe casing is eccentric and is stationary,the mud and cement slurries have the same density andthe gel structure of the mud has been broken and the mud and cement follow the Bingham flow model. Effects related to these restrictions will be discussed. FLOW PATTERNS SINGLE FLUID IN ANNULUSFlow of a single fluid through an eccentric annulus is illustrated in Fig. 1. Part A shows laminar flow of a Newtonian fluid. This distribution of flow was calculated by Piercy, Hooper and Winney. In fully developed turbulent flow, the velocity distribution around the annulus is less distorted, but the flow still favors the widest part of the annulus. Parts B, C and D of Fig. 1 are a qualitative representation of the flow of a Bingham fluid. The yield strength of the fluid increases the severity of bypassing compared to Newtonian flow. At a very low rate of flow, all flow is confined to that portion of the annulus which has the minimum perimeter-to-area ratio, The fluid shears on the perimeter of that area when the pressure gradient multiplied by the area just exceeds the yield stress of the fluid multiplied by the perimeter. Whether or not the minimum perimeter-to-area region encompasses all of the annulus or only a part (as shown in Part B) depends on the geometry of the annulus. If only a part begins to flow, increasing the rate of flow increases the area flowing until finally there is flow throughout the annulus. JPT P. 251ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3