Using an Integrated Multidimensional Scaling and Clustering Method to Reduce the Number of Scenarios Based on Flow-Unit Models Under Geological Uncertainties

Author:

Mahjour Seyed Kourosh1,Correia Manuel Gomes1,Santos Antonio Alberto de Souza dos1,Schiozer Denis José1

Affiliation:

1. CEPETRO/FEM, University of Campinas (UNICAMP), Postal Code 6052 13083-970, Campinas, São Paulo, Brazil

Abstract

Abstract Understanding the role of geological uncertainties on reservoir management decisions requires an ensemble of reservoir models that cover the uncertain space of parameters. However, in most cases, high computation time is needed for the flow simulation step, which can have a negative impact on a suitable assessment of flow behavior. Therefore, one important point is to choose a few scenarios from the ensemble of models while preserving the geological uncertainty range. In this study, we present a statistical solution to select the representative models (RMs) based on a novel scheme of measuring the similarity between 3D flow-unit models. The proposed method includes the integration of multidimensional scaling and cluster analysis (IMC). IMC can be applied to the models before the simulation process to save time and costs. To check the validity of the methodology, numerical simulation and then uncertainty analysis are carried out on the RMs and full set. We create an ensemble of 200 3D flow-unit models through the Latin Hypercube sampling method. The models indicate the geological uncertainty range for properties such as permeability, porosity, and net-to-gross. This method is applied to a synthetic benchmark model named UNISIM-II-D and proves to offer good performance in reducing the number of models so that only 9% of the models in the ensemble (18 selected models from 200 models) can be sufficient for the uncertainty quantification if appropriate similarity measures and clustering methods are used.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3