A Novel Piezoelectric Double-Flapper Servovalve Pilot Stage: Operating Principle and Performance Prediction

Author:

Tamburrano Paolo1,Amirante Riccardo2,Distaso Elia2,Plummer Andrew R.1

Affiliation:

1. University of Bath, Bath, UK

2. Polytechnic University of Bari, Bari, Italy

Abstract

This paper proposes a novel architecture for the pilot stage of electro-hydraulic two-stage servovalves that does not need a quiescent flow and a torque motor as well as a flexure tube to operate. The architecture consists of two small piezoelectric valves, coupled with two fixed orifices, which allow variation of the differential pressure at the main stage spool extremities in order to move it with high response speed and accuracy. Each piezoelectric valve is actuated by a piezoelectric ring bender, which exhibits much greater displacement than a stack actuator of the same mass, and greater force than a rectangular bender. The concept is intended to reduce the influence of piezoelectric hysteresis. In order to assess the validity of the proposed configuration and its controller in terms of spool positioning accuracy and dynamic response, detailed simulations are performed by using the software Simscape Fluids. At 50% amplitude the −90° bandwidth is about 150Hz.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3