High-Accuracy Thermal Analysis Methodology for Semiconductor Junction Temperatures by Considering Line Patterns of Three-Dimensional Modules

Author:

Kumano Yutaka1,Ogura Tetsuyoshi1,Yamada Toru1

Affiliation:

1. Printed Electronics and EMC Technology Development Office, Panasonic Corporation, 1006 Kadoma, Kadoma City, Osaka 571-8501, Japan

Abstract

A novel computational fluid dynamics analysis method of predicting semiconductor junction temperatures precisely without modeling printed circuit board (PCB) line patterns was developed. First, PCBs are divided into multiple regions. The effective anisotropic thermal conductivity of each region is then assigned as follows. All the regions are divided into smaller subregions whose size is below the pattern width. The thermal conductivity of each subregion is defined by the property of the material at the center of the subregion. Next, a thermal circuit network composed of all the subregions is generated, and finally the anisotropic thermal conductivities of each region are computed by solving this thermal network matrix. When boards are divided into multiple regions, there is a convergence region size under which the analytical results show no further change. In this paper, the relationship between the size of the divided regions and the accuracy of the analytical results was investigated. It was confirmed that the calculated semiconductor junction temperatures were precisely coincident with the experimental results when the size of the regions was less than 20 times the line pattern width.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference9 articles.

1. Cramming More Components Onto Integrated Circuits;Moore;Electronics

2. A New 3D Module Using Embedded Actives and Passives;Sugaya

3. A New 3D System in Module SIMPACT;Sugaya

4. Factors Affecting the Calculation of Effective Conductivity in Printed Circuit Boards;Culham

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3