Tuning Crumpled Sheets for An Enhanced Flexoelectric Response

Author:

Liu Yang1,Chen Lingling1,Wang Binglei1,Yang Shengyou23,Sharma Pradeep45

Affiliation:

1. Department of Engineering Mechanics, School of Civil Engineering, Shandong University, Jinan 250061, China

2. Department of Engineering Mechanics, School of Civil Engineering, Shandong University, Jinan 250061, China;

3. Suzhou Research Institute, Shandong University, Jiangsu 215123, China

4. Department of Mechanical Engineering;

5. Department of Physics, University of Houston, Houston, TX 77204

Abstract

Abstract Flexoelectricity is a universal phenomenon present in all dielectrics that couples electrical polarization to strain gradients and vice-versa. Thus, structures and configurations that permit large strain gradients facilitate the design of an enhanced electromechanical coupling. In a recent work, we demonstrated the prospects for using crumpling of essentially arbitrary thin sheets for energy harvesting. Crumples, with their defect-like nature, admit singular and rapidly varying deformation fields and are thus ideal for engineering sharp non-uniformities in the strain field. In this work, we consider how to tune the design of crumpled sheets for a significant flexoelectric response. Specifically, we analytically derive the electromechanical coupling for a thin crumpled sheet with varying thickness and graded Young’s modulus as key design variables. We show that the electromechanical coupling of such crumpled sheets can be tuned to be nearly five times those of the homogeneous film.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3