Singularity-Free Lie Group Integration and Geometrically Consistent Evaluation of Multibody System Models described in terms of Standard Absolute Coordinates

Author:

Mueller Andreas1

Affiliation:

1. Johannes Kepler University, Linz, Austria

Abstract

Abstract A classical approach to the MBS modeling is to use absolute coordinates, i.e. a set of (possibly redundant) coordinates that describe the absolute position and orientation of the individual bodies w.r.t. to an inertial frame (IFR). A well-known problem for the time integration of the equations of motion (EOM) is the lack of a singularity-free parameterization of spatial motions, which is usually tackled by using unit quaternions. Lie group integration methods were proposed as alternative approach to the singularity-free time integration. Lie group integration methods, operating directly on the configuration space Lie group, are incompatible with standard formulations of the EOM, and cannot be implemented in existing MBS simulation codes without a major restructuring. A framework for interfacing Lie group integrators to standard EOM formulations is presented in this paper. It allows describing MBS in terms of various absolute coordinates and at the same using Lie group integration schemes. The direct product group SO(3)xR3; and the semidirect product group SE(3) are use for representing rigid body motions. The key element of this method is the local-global transitions (LGT) transition map, which facilitates the update of (global) absolute coordinates in terms of the (local) coordinates on the Lie group. This LGT map is specific to the absolute coordinates, the local coordinates on the Lie group, and the Lie group used to represent rigid body configurations. This embedding of Lie group integration methods allows for interfacing with standard vector space integration methods.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3