Affiliation:
1. Hewlett Packard Laboratories, 1501 Page Mill Road, M/S 1183 Palo Alto, CA 94304
Abstract
The design of cooling solutions is an important consideration for the efficient management of different types of energy technologies. In the present work, we adapt the method of thermo-volumes—which has been used for nearly a decade in the design of electronic cooling solutions—for purposes of expeditiously understanding the thermal resistance of a given solution (in terms of cooling performance) along with its flow resistance (an indicator of the pumping power or energy consumption, which will be required by the thermal solution). Furthermore, we expand on thermo-volumes by including the lifetime exergy cost as a means to enable the consideration of resource consumption (and thus the environmental sustainability) of the cooling solution. We apply this framework for evaluation of thermal management solutions in terms of the heat removal capacity per unit lifetime exergy consumption. This paper concludes by illustrating applicability of the method to the design of a fuel cell thermal management solution.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献