Affiliation:
1. Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015
Abstract
Generally, the mixed boundary value problems in fracture and contact mechanics may be formulated in terms of integral equations. Through a careful asymptotic analysis of the kernels and by separating nonintegrable singular parts, the unique features of the unknown functions can then be recovered. In mechanics and potential theory, a characteristic feature of these singular kernels is the Cauchy singularity. In the absence of other nonintegrable kernels, Cauchy kernel would give a square-root or conventional singularity. On the other hand, if the kernels contain, in addition to a Cauchy singularity, other nonintegrable singular terms, the application of the complex function theory would show that the solution has a non-square-root or unconventional singularity. In this article, some typical examples from crack and contact mechanics demonstrating unique applications of such integral equations will be described. After some remarks on three-dimensional singularities, the key examples considered will include the generalized Cauchy kernels, membrane and sliding contact mechanics, coupled crack-contact problems, and crack and contact problems in graded materials.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献