Implicit Numerical Model of a High-Pressure Injection System

Author:

Catania A. E.1,Dongiovanni C.1,Mittica A.1

Affiliation:

1. Dipartimento di Energetica, Politecnico di Torino, Torino, Italy

Abstract

An implicit finite-difference numerical method has been developed and applied to the simulation of unsteady flow phenomena in a high-pressure injection system. A first-order one-step BSBT (backward space, backward time) scheme was used to obtain the difference analogue of the one-dimensional, elemental-volume averaged, partial differential equations governing the pressure-pipe flow. Second and higher-order implicit difference representations were employed for the ordinary differential equations simulating the pump and injector dynamics. The resultant nonlinear algebraic equations were solved by the Newton-Raphson method and a fast modified version of the Gaussian elimination procedure was used to solve the linearized equations. This was an extension of the Thomas solver to a multidiagonal system of algebraic equations. A compact, efficient and stable numerical algorithm was so obtained. The mathematical model takes into account the compressibility of the liquid fuel, the boundary shear, and also includes the simulation of possible cavitation occurrence at one or multiple locations in the injection system. No artificial viscosity has to be added to the solution in the vicinity of discontinuities induced by cavitation in the flow properties. The cavitation simulation is based on a simple mixture model of transient two-phase flow in pipes and can incorporate the effects of gaseous cavitation occurrence. Experimental values of the flow coefficients were used for the pump and injector and, for the latter, the dependence of the discharge coefficients on the needle lift and injection pressure was also taken into account. The model was tested and validated by comparing the numerical results with those of experiments carried out at the Fiat Research Center on a diesel-engine inline injection system, with a jerk-pump and an orifice type nozzle-injector.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3