A Modified, High-Efficiency, Recuperated Gas Turbine Cycle

Author:

El-Masri M. A.1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

The thermal efficiency of an intercooled/recuperated cycle may be increased by: (a) evaporatively aftercooling the compressor discharge; and (b) injecting and evaporating an additional amount of water in the recuperator. Comparative computations of such a modified cycle and intercooled/recuperated cycles carried out over a wide range of pressure ratios and turbine inlet temperatures and at two different levels of component technologies show an advantage of over five percentage points in efficiency for the modified cycle. About 60 percent of this improvement results from modification (a) and 40 percent from modification (b). The modified intercooled/recuperated cycle is compared with nonintercooled steam-injected gas turbine systems at each component technology level. The present cycle is found to be superior by about 2.75 percentage points in efficiency and to require a substantially smaller water flow rate. To assist in interpreting those differences, the method of available-work analysis is introduced and applied. This is identical to exergy analysis for systems with a pure-substance working fluid, but differs from the latter for systems using a mixture of pure substances insofar as the thermodynamic dead state is defined for the chemical and phase composition realized at the exhaust conditions of practical engineering devices and systems. This analysis is applied to the heat-recovery processes in each of the three systems considered. It shows that the substantial, fundamental available-work loss incurred by mixing steam and gases in the steam-injected system is the main reason for the superior efficiency of the precent cycle.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State of the Art in Humidified Gas Turbine Configurations;Energies;2022-12-15

2. Methodology for TurboGenerator Systems Optimization in Electrified Powertrains;Advances in Engine and Powertrain Research and Technology;2022

3. Simulation and optimization of a combined cycle power plant with low heating value fuel gas;International Journal of Modeling, Simulation, and Scientific Computing;2021-09-17

4. Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases;Applied Sciences;2019-10-08

5. Optimal Architectures for Dry and Wet Gas-Turbine Engines;Journal of Engineering for Gas Turbines and Power;2018-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3