Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases

Author:

Taimoor Aqeel Ahmad,Siddiqui Muhammad EhtishamORCID,Abdel Aziz Salem S.

Abstract

In combined cycle gas turbines, most of the energy loss is usually due to the high temperature of the exhaust gases. Different heat recuperation methods are used. In this study, a novel direct method for heat recovery is investigated. Confidence in the results is established by accounting for all the losses and simulation errors while comparing with the conventional cycle. Aspen HYSYS and MATLAB are the simulation tools used. The General Electric (GE) 9HA.02 combined cycle is taken as a base case. Five gases, air, argon, hydrogen, nitrogen, and carbon dioxide, are studied with the proposed modification. The efficiency maximization function is updated and the pressure and temperature ratios of individual Brayton and Rankine cycles are discussed. The combustor/heat exchanger is modified and simulated according to the known principles of heat and momentum transfer. The whole simulation algorithm is provided. Equation of state (EOS-PR) is used to calculate the properties at every discretized step (for H2, critical properties are modified/HYSYS inbuilt feature). Different gases are analyzed according to their property profiles over the whole cycle. The effect of fluid properties on efficiency is discussed as a guideline for any tailored fluid.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3