Loss Audit of a Turbine Stage

Author:

Yoon Sungho1,Vandeputte Thomas2,Mistry Hiteshkumar3,Ong Jonathan4,Stein Alexander5

Affiliation:

1. GE Global Research, Munich 85748, Germany e-mail:

2. GE Global Research, Niskayuna, NY 12309

3. GE Global Research, Bangalore 560 006, India

4. GE Global Research, Munich 85748, Germany

5. GE Power & Water, Greenville, SC 29615

Abstract

In order to achieve high aerodynamic efficiency of a turbine stage, it is crucial to identify the source of aerodynamic losses and understand the associated loss generation mechanisms. This helps a turbine designer to maximize the performance of the turbine stage. It is well known that aerodynamic losses include profile, endwall, cooling/mixing loss, leakage, and trailing edge loss components. However, it is not a trivial task to separate one from the others because different loss sources occur concurrently and they interact with each other in a machine. Consequently, designers tend to rely on various empirical correlations to get an approximate estimate of each aerodynamic loss contribution. In this study, a systematic loss audit of an uncooled turbine stage has been undertaken by conducting a series of numerical experiments. By comparing entropy growth across the turbine stage, aerodynamic losses are broken down within the stator, rotor, and interblade row gap. Furthermore, losses across each blade row are broken down into profile, leakage, endwall, and trailing edge losses. The effect of unsteady interaction due to the relative motion of the stator and the rotor was also identified. For the examined turbine stage, trailing edge losses of the rotor were dominated, contributing to more than a third of the total aerodynamic loss. The profile loss across the stator and the rotor, unsteady loss between the stator and the rotor, and the stator endwall loss were also identified to be the significant loss sources for this turbine stage. The design implications of the findings are discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3