A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines

Author:

Denton John1,Pullan Graham1

Affiliation:

1. Cambridge University, Cambridge, UK

Abstract

Endwall loss, often termed “secondary loss”, in axial turbines has been intensively studied for many years, despite this the physical origin of much of the loss is not really understood. This lack of understanding is a serious impediment to our ability to predict the loss and to the development of methods for reducing it. This paper aims to study the origins of the loss by interrogating the results from detailed and validated CFD calculations. The calculation method is first validated by comparing its predictions to detailed measurements in a turbine cascade. Very good agreement between the calculations and the measurements is obtained. The solution is then examined in detail to highlight the sources of entropy generation in the cascade, several different sources of loss are found to be significant. The same blade row is then used to study the effects of the of the inlet boundary layer thickness on the loss. It is found that only the inlet boundary layer loss and the mixing loss vary greatly with inlet boundary layer thickness. Finally a complete 50% reaction stage, with identical stator and rotor blade profiles, is examined using both steady calculations, with a mixing plane model, and the time average of unsteady calculations. It is found that the endwall flow in the rotor is completely different from that in the stator. Because of this it is considered that results from endwall flow and loss measurements in cascades are of limited relevance to the endwall flow in a real turbine. The results are also used to discuss the validity of the mixing plane model.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3