Modeling of Flexible Robots With Varying Cross Section and Large Link Deformations

Author:

Celentano Laura1

Affiliation:

1. Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, Napoli 80125, Italy e-mail:

Abstract

In this paper, a very easy, numerically stable and computationally efficient method is presented, which allows the modeling and simulation of a flexible robot with high precision. The proposed method is developed under the hypotheses of flexible links having varying cross sections, of large link deformations and of time-varying geometrical and/or physical parameters of both the robot and the end-effector. This methodology uses the same approach of the modeling of rigid robots, after suitably and fictitiously subdividing each link of the robot into sublinks, rigid to the aim of the calculus of the inertia matrix and flexible to the aim of the calculus of the elastic matrix. The static and dynamic precision of the method is proved with interesting theorems, examples and some experimental tests. Finally, the method is used to model, control, and simulate a crane, composed of three flexible links and a cable with varying length, carrying a body with a variable mass.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Task-Aware Lightweight Link Design Framework for Robots Under Dynamic Loading;2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids);2023-12-12

2. An Approach to Model and Control a Flexible Spacecraft;IFAC-PapersOnLine;2023

3. On the exponential stabilization of a flexible structure with dynamic delayed boundary conditions via one boundary control only;Journal of the Franklin Institute;2021-01

4. New development of the dynamic modeling and the inverse dynamic analysis for flexible robot;International Journal of Advanced Robotic Systems;2020-07-01

5. Review on Modeling and Control of Flexible Link Manipulators;Modeling, Identification and Control: A Norwegian Research Bulletin;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3