Comparative Validation Study on Identification of Premixed Flame Transfer Function

Author:

Tay-Wo-Chong Luis1,Bomberg Sebastian1,Ulhaq Ahtsham1,Komarek Thomas1,Polifke Wolfgang1

Affiliation:

1. Lehrstuhl für Thermodynamik, Technische Universität München, Boltzmannstraße 15, 85748 Garching, Germany

Abstract

The flame transfer function (FTF) of a premixed swirl burner was identified from a time series generated with computational fluid dynamics simulations of compressible, turbulent, reacting flow at nonadiabatic conditions. Results were validated against experimental data. For large eddy simulation (LES), the dynamically thickened flame combustion model with one step kinetics was used. For unsteady simulation in a Reynolds-averaged Navier–Stokes framework (URANS), the Turbulent Flame Closure model was employed. The FTF identified from LES shows quantitative agreement with experiment for amplitude and phase, especially for frequencies below 200 Hz. At higher frequencies, the gain of the FTF is underpredicted. URANS results show good qualitative agreement, capturing the main features of the flame response. However, the maximum amplitude and the phase lag of the FTF are underpredicted. Using a low-order network model of the test rig, the impact of the discrepancies in predicted FTFs on frequencies and growth rates of the lowest order eigenmodes were assessed. Small differences in predicted FTFs were found to have a significant impact on stability limits. Stability behavior in agreement with experimental data was achieved only with the LES-based flame transfer function.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3