Driving Mechanisms in Low-Order Modeling of Longitudinal Combustion Instability

Author:

D’Alessandro Simone1,Frezzotti Maria Luisa1,Favini Bernardo1,Nasuti Francesco1ORCID

Affiliation:

1. Sapienza University of Rome, 00184 Rome, Italy

Abstract

Several test cases in the literature have shown that both transverse and longitudinal high-frequency combustion instability can be driven by the injector dynamics. In these cases, pressure oscillations result in fluctuations in propellant mass flow rate, which yields pulsing heat release. This fundamental mechanism is the focus of the present work, with the aim of including this effect in a quasi-1D nonlinear model of Euler equations suited to studies of longitudinal combustion instability. In particular, the injection dynamics is represented through a simplified formulation, which is the core of the proposed response function. The analysis also addresses the influence of combustion efficiency on the main characteristics of the resulting limit cycle (frequency and amplitude). The obtained model is tested comparing the quasi-1D simulations against the experimental data of the continuously variable resonance combustor available in the literature, considering three different geometrical configurations, with different lengths of the oxidizer post. The proposed formulation is capable of reasonably reproducing the unstable behavior, as well as providing a simple model that explains the mechanism that leads to a low average combustion efficiency during unstable operation.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3