Exact Spectral Moments and Differentiability of the Weierstrass-Mandelbrot Fractal Function

Author:

Green Itzhak1

Affiliation:

1. GWW School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, MRDC Building, Suite 4209, Atlanta, GA 30332

Abstract

Abstract Fractal mathematics using the Weierstrass-Mandelbrot (WM) function has spread to many fields of science and engineering. One of these is the fractal characterization of rough surfaces, which has gained ample acceptance in the area of contact mechanics. That is, a single mathematical expression (the WM function) contains characteristics that mimic the appearance of roughness. Moreover, the “roughness” is “similar” across large dimension scales ranging from macro to nano. The field of contact mechanics is largely divided into two schools of thought: (1) the roughness of real surfaces is essentially random, for which stochastic treatment is appropriate, and (2) surface roughness can be reduced to fractal mathematics using fractal parameters. Under certain mathematical constraints, the WM function is either stochastic or deterministic. The latter has the appeal that it contains no randomness, so fractal mathematics may offer closed-form solutions. Spectral moments of rough surfaces still apply to both approaches, as these represent physical metrology properties of the surface standard deviation, slope, and curvature. In essence, spectral moments provide a means of data reduction so that other physical processes can subsequently be applied. It is well known, for example, that the contact model of rough surfaces, by Greenwood and Williamson (GW), depends on parameters that are direct outcomes of these moments. Despite the vast amount of publications on the WM function dedicated to surfaces, two papers stand out as originators, where the others mostly rework their results. These two papers, however, contain some omissions and approximations that may lead to gross errors in the estimation of the spectral moments. The current work revisits these papers and adds information, but departs in the mathematical treatment to derive exact expressions for the said moments. Moreover, it is said that the WM function is nondifferential. That is also revisited herein, as another approach to derive the spectral moments depends on such derivatives. First, the complete mathematical treatment of the WM function is made, then the spectral moments are derived to yield exact forms, and finally, examples are given where the physical meanings of the approximate and exact moments are discussed and their values are compared. Numerical procedures will be introduced for both, and the effectiveness of the computational effort is discussed. One numerical procedure is particularly effective for any digitized signal, whether that originates from analytical functions (e.g., WM) or real surface measurements.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3