Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces

Author:

McCool J. I.1

Affiliation:

1. SKF Industries, Inc., King of Prussia, PA 19406-1352

Abstract

An easily programmed method is proposed for translating the rms height (Rq) and rms slope (Δq) determined using a profile measuring instrument, into more readily interpreted measures of functional severity such as the density of plastic contacts or the mean real contact pressure. The method involves estimation from the ratio Rq/Δq, of the exponent k of an assumed power function relation between the profile spectrum and the spatial frequency. Having estimated k, the mean square curvature is computed analytically and used together with Rq and Δq to determine the three input variables needed for the Greenwood-Williamson (GW) microcontact model. The GW model is then used to compute, as a function of the separation of two rough surfaces, the contact density, the plastic contact density, the mean load per unit area and the mean load per unit of real contact area. The mean square curvature estimated in this manner is compared to the directly measured mean square curvature for 12 distinct surface types. The values compared quite favorably (within 25 percent) for three of the specimens which included a bearing ball and the ground inner ring rolling path of a cylindrical roller bearing. The discrepancies exceeded a factor of 3 for three other specimens. The microcontact model output computed using both measured and estimated mean square curvature values showed that some output variables, e.g., plastic contact density, are more discrepant than the estimated and measured curvature values. Other output variables of the microcontact model, in particular, the mean real pressure, attenuate the discrepancies. The mean real pressures computed using the calculated and measured curvatures, were within 30 percent for all but three specimens. The maximum discrepancy observed was 55 percent. The results are sufficiently encouraging and the methodology so easy to apply, to commend the practice of routinely supplementing profile measurement data with microcontact model output.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3